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Note 

Plasma Simulations Using Inversion Symmetry 
as a Boundary Condition 

I. 1~TRoDucT10N 

Simulation of micro-instabilities in inhomogeneous plasmas is of great current 
interest. Slab models, which we consider here, have been very useful in dealing with 
these instabilities [ 141. Simulation volumes that are often much smaller than typical 
experimental plasmas have been employed, due to economic and hardware 
constraints, i.e., the ratio of the length of the simulation volume to characteristic 
plasma lengths, such as the Debye length or a gyroradius, is not a very large number. 
Hence, it is tempting to view the simulation volume as a small part of a larger 
plasma. When this viewpoint is adopted it is necessary that the boundary conditions 
used, both in advancing the particles or fluid elements and in solving for the fields, 
reflect the presence of the plasma beyond the simulation boundaries. 

In this paper we report on the use of inversion symmetry to obtain such a 
plasma-plasma boundary, as opposed to a plasma-wall boundary [5,6]. The use of 
the inversion symmetry as a boundary condition was originally motivated by the 
physics of drift waves in an inhomogeneous plasma. In a slab plasma, as shown in 
Fig. 1, for example, the electron drift waves propagate up (perpendicular to both 
magnetic field and density gradient) in the region x > 0 and down in the region x < 0; 
similar phenomena occur in these two regions except that they are inversion 
symmetric. This allows us to study the phenomenon by simulating only the half of 
the slab, say, x > 0, reducing the computation by a factor of 2. The allowed pertur- 
bations, which must be even under inversion, include many important instabilities, 
e.g., electron drift waves, drift cyclotron instability, drift cyclotron loss cone 
instability and lower hybrid drift instability. We have implemented this boundary in 
two-dimensional particle simulations, and found it to be a useful alternative to the 
conducting wall type of boundary used by other workers [5,6]. 

II. THE USE OF SYMMETRIES IN OBTAINING BOUNDARY CONDITIONS 

Let the simulation volume be embedded in a larger plasma. The boundary 
conditions on the simulation volume may be obtained by demanding that the larger 
plasma be invariant under an appropriate group of symmetry operations. 

The imposition of a symmetry on the larger plasma restricts both the equilibrium 
and the perturbations that are accessible in the simulation. Hence, it is important to 
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FIG. 1. A two-dimensional model with an inversion symmetry boundary at x = 0. The simulation 
volume is in 0 < x <LX and -LY/2 < y < LY/2. The y-axis corresponds to a plasma-plasma 
boundary. The system has inversion symmetry through the origin (O,O), has an open boundary at 
x = LX, and is periodic in y. Equilibrium density, n,,(x), is symmetric about x = 0. 

impose symmetries that are appropriate to the problem at hand. Use of periodic 
boundaries is appropriate when the larger plasma is uniform in the direction of tran- 
slation. We therefore choose to impose translational symmetry in the homogeneous 
coordinate, y, of our plasma slab, yielding periodic boundaries at y = fLY/2. See 
Fig. 1. 

The imposition of translational symmetry in the inhomogeneous coordinate, x, 
implies that the larger plasma consists of an infinite array of identical plasma slabs 
(see, e.g., the model of Gerver et al. [7]). This is inappropriate because we are 
interested in the behavior of an isolated plasma slab. Also, because the physics allows 
qualitatively similar phenomena on both left and right sides of the plasma slab, we 
may avoid duplication of the physics and gain a factor of 2 in the simulation volume 
by imposing a symmetry on the larger plasma that incorporates this similarity. 

The equilibrium plasma is taken to be an isolated plasma slab characterized by a 
number density, n,, and a magnetic field, B,, that are functions of x only. n,, a 
scalar, and B,, a pseudo-vector [8,9] are required to be continuous across the 
simulation boundary. An appropriate boundary condition that meets these 
requirements may be obtained by demanding that the larger plasma be invariant 
under inversion through a point lying on the boundary of the simulation volume. 
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The inversion point is chosen, for convenience, to be the origin of the coordinate 
system. A particle that leaves the simulation volume at (0, y) with a velocity, v, will 
then be replaced by an image particle entering the simulation volume at (0, -y) with 
a velocity -v. This method of treating the particle boundary crossings lets both the 
computer particles and their images execute correct orbits in the given fields. 
Therefore there can be no nonphysical effects associated with these boundary 
crossings. Similarly, the boundary condition for the scalar potential, 4, is 

#(x7 v) = cb(-x7 -.Y)Y (1) 

which closes the finite difference representation of Poisson’s equation at x = 0. 
These boundary conditions have, as yet, been implemented only in electrostatic 

particle simulation codes. However, we expect that inversion boundary conditions 
will be particularly useful for bounded electromagnetic particle simulation models 
because there are no sudden changes in the orbits of particles at the boundary which 
might result in the emission of electromagnetic waves (bremsstrahlung). In an elec- 
tromagnetic code utilizing inversion symmetry the boundary condition at x = 0 on 
the vector potential, A, is 

A(x, y) = -A(-x, -y). (2) 

Alternatively, using the electric field, E, and the magnetic field, B, directly, the finite 
difference version of Maxwell’s equations may be closed at x = 0 by using 

E(x, Y) = -EC---x, -Y) (3) 

and 

B(x, v) = B(-x, -Y). (4) 

Next a boundary condition at x = LX needs to be specified. We note first that if 
inversion symmetry is used on this boundary (as well as on the boundary at x = 0), 
the result will be equivalent to a periodic system with boundaries at -LX and LX, 
this is not our object. Instead, we have chosen to employ an “open-sided” boundary 
[ 10, 111 in which particles are reflected at x = LX, while the potential is matched 
with the spatially decaying vacuum solution for x > LX. 

We note that the simulation model described here may be employed in simulating 
both neutral and nonneutral plasmas; for nonneutral plasmas the electric field is 
matched to the vacuum fields E, = fQ,,,,,/2L, at x = f co. 

III. TWO-DIMENSIONAL SIMULATION WITH THE INVERSION SYMMETRY 

We have tested the inversion symmetry boundary condition in a two-dimensional 
particle simulation code. The code follows the dynamics of both electrons and ions in 
a uniform magnetic field using the well-known leap-frog scheme. We chose a 
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FIG. 2. Contours of potentials created by a single particle in the simulation volume. The potential 
satisfies )(x, y) = 4(-x, -y) and d(x -+ co, y) = 0. The contours for x < 0 were obtained by inverting 
those for x > 0 about the origin (0,O). 

homogeneous plasma to test the code, even though the primary motivation for the use 
of the inversion symmetry is the simulation of inhomogeneous plasmas. 

A counter plot of the potential created by a single particle in the system is shown 
in Fig. 2; the simulation volume is the x > 0 region of the x-y plane with the 
inversion symmetry boundary at x=0 and the open boundary on the right. The 
potential is due to the particle and its inversion image particle in the region x < 0. 
The contours for x < 0 are obtained by inverting the potential in the simulation 
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FIG. 3. The high-frequency power spectrum showing the electron Bernstein modes for the m = 1 
Fourier mode (k, = 2nm/L Y) at x = 0 for time 0 < upe t < 4000. The arrows along the horizontal axis 
indicates the frequencies for klp, E 0.8 obtained from the dispersion relation. Simulation parameters are 
32 X 32 cells, 16,384 particles for each species, mass ratio m,/mp = 25, temperature ratio T,/T, = 4, 
electron cyclotron frequency w,, = 0.5, electron Larmor radius pe = 4, electron Debye length I,, = 2, 
and time step At = 0.25, where electron plasma frequency ~~~ and grid size Ax are taken to be unity. 
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FIG. 4. The low-frequency spectrum for the m = 0 mode (k, = 0) at x = 0 for time 0 < o,,t < 4000. 
The peak corresponds to the lower hybrid wave. 

volume. The system shown is inversion symmetric about the point (0,O). It is also 
inversion symmetric about the points (0, fLY/2) because inversion through 
(0, fLY/2) is just the product of inversion through (0,O) and translation of fLK 
The potential is seen to satisfy the boundary conditions imposed. 

The system is loaded initially with a spatially homogeneous thermal plasma out to 
x = LX. The particles are reflected at x = LX. Two interesting results are the high- 
and low-frequency power spectra. 

The high-frequency power spectrum is shown in Fig. 3 for the first Fourier mode 

FIG. 5. Potential 1 $(x)1’ mode structure for m = 0 and o 2 wLH. Dots are the simulation results and 
the solid line is the analytical result. 
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(k,. = 27r/LY) at x = 0. Electron Bernstein modes are clearly in agreement with the 
expected frequencies for k, = k, as indicated on the axis. Low-frequency peaks 
(w < WCC’ w,, = electron cyclotron frequency) due to the ions (such as ion Bernstein 
modes, and lower hybrid modes) are also seen. 

The low-frequency power spectrum of the k, = 0 mode at x = 0 is shown in Fig. 4. 
The peak at o/uCi 1: 4.9 is close to the lower hybrid frequency mLH 2: oPi/(l + 
co2 PP 

/uf,y2 = 4.47 wCi; the discrepancy is accounted for by the thermal effects. The 
spatial structure, ]#(x)I’, for this mode, w % mLH, can be obtained from power spectra 
of the potential at various points in x, as shown by the dots in Fig. 5. The dots 
compare well with the analytical result [ 121 shown by the solid line. 

The simulation plasma under the inversion and open boundary conditions behaves 
as expected without any ill effects near either boundary. The homogeneous density 
profile was found to be maintained without abnormal behavior near x = 0 up to 
16,000 time steps, with less than 3 % increase in the total system energy. 

IV. CONCLUDING REMARKS 

Inversion symmetry boundary conditions have been proposed for plasma 
simulations as an attractive alternative to other currently used boundary conditions 
[S, 61. Initial test results of a two-dimensional particle code with an inversion 
symmetry boundary were found to be in agreement with theory. 

We have used this modeling for drift cyclotron instability [ 131 and lower hybrid 
heatiung studies [ 141, with nonuniform densities, with good success, gaining the 
savings of a factor of 2 in computer time and storage. In addition, further savings 
have been gained using a guiding center particle mover for the electrons, in 
simulating low-frequency instabilities. 
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